22 resultados para Phagocytosis

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phagocytosis of shed photoreceptor rod outer segments (ROS) by the retinal pigment epithelium (RPE) is essential for retinal function. Here, we demonstrate that this process requires αvβ5 integrin, rather than αvβ3 integrin utilized by systemic macrophages. Although adult rat RPE expressed both αvβ3 and αvβ5 integrins, only αvβ3 was expressed at birth, when the retina is immature and phagocytosis is absent. Expression of αvβ5 was first detected in RPE at PN7 and reached adult levels at PN11, just before onset of phagocytic activity. Interestingly, αvβ5 localized in vivo to the apical plasma membrane, facing the photoreceptors, and to intracellular vesicles, whereas αvβ3 was expressed basolaterally. Using quantitative fluorimaging to assess in vitro uptake of fluorescent particles by human (ARPE-19) and rat (RPE-J) cell lines, αvβ5 function-blocking antibodies were shown to reduce phagocytosis by drastically decreasing (85%) binding of ROS but not of latex beads. In agreement with a role for αvβ5 in phagocytosis, immunofluorescence experiments demonstrated codistribution of αvβ5 integrin with internalized ROS. Control experiments showed that blocking αvβ3 function with antibodies did not inhibit ROS phagocytosis and that αvβ3 did not colocalize with phagocytosed ROS. Taken together, our results indicate that the RPE requires the integrin receptor αvβ5 specifically for the binding of ROS and that phagocytosis involves internalization of a ROS-αvβ5 complex. αvβ5 integrin does not participate in phagocytosis by other phagocytic cells and is the first of the RPE receptors involved in ROS phagocytosis that may be specific for this process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The function of the small-Mr Ras-like GTPase Rap1 remains largely unknown, but this protein has been demonstrated to regulate cortical actin-based morphologic changes in Dictyostelium and the oxidative burst in mammalian neutrophils. To test whether Rap1 regulates phagocytosis, we biochemically analyzed cell lines that conditionally and modestly overexpressed wild-type [Rap1 WT(+)], constitutively active [Rap1 G12T(+)], and dominant negative [Rap1 S17N(+)] forms of D. discoideum Rap1. The rates of phagocytosis of bacteria and latex beads were significantly higher in Rap1 WT(+) and Rap1 G12T(+) cells and were reduced in Rap1 S17N(+) cells. The addition of inhibitors of protein kinase A, protein kinase G, protein tyrosine kinase, or phosphatidylinositide 3-kinase did not affect phagocytosis rates in wild-type cells. In contrast, the addition of U73122 (a phospholipase C inhibitor), calphostin C (a protein kinase C inhibitor), and BAPTA-AM (an intracellular Ca2+ chelator) reduced phagocytosis rates by 90, 50, and 65%, respectively, suggesting both arms of the phospholipase C signaling pathways played a role in this process. Other protein kinase C–specific inhibitors, such as chelerythrine and bisindolylmaleimide I, did not reduce phagocytosis rates in control cells, suggesting calphostin C was affecting phagocytosis by interfering with a protein containing a diacylglycerol-binding domain. The addition of calphostin C did not reduce phagocytosis rates in Rap1 G12T(+) cells, suggesting that the putative diacylglycerol-binding protein acted upstream in a signaling pathway with Rap1. Surprisingly, macropinocytosis was significantly reduced in Rap1 WT(+) and Rap1 G12T(+) cells compared with control cells. Together our results suggest that Rap1 and Ca2+ may act together to coordinate important early events regulating phagocytosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rho family proteins have been implicated in regulating various cellular processes, including actin cytoskeleton organization, endocytosis, cell cycle, and gene expression. In this study, we analyzed the function of a novel Dictyostelium discoideum Rho family protein (RacC). A cell line was generated that conditionally overexpressed wild-type RacC three- to fourfold relative to endogenous RacC. Light and scanning electron microscopy indicated that the morphology of the RacC-overexpressing cells [RacC WT(+) cells] was significantly altered compared with control cells. In contrast to the cortical F-actin distribution normally observed, RacC WT(+) cells displayed unusual dorsal and peripheral F-actin–rich surface blebs (petalopodia, for flower-like). Furthermore, phagocytosis in the RacC WT(+) cells was induced threefold relative to control Ax2 cells, whereas fluid-phase pinocytosis was reduced threefold, primarily as the result of an inhibition of macropinocytosis. Efflux of fluid-phase markers was also reduced in the RacC WT(+) cells, suggesting that RacC may regulate postinternalization steps along the endolysosomal pathway. Treatment of cells with Wortmannin and LY294002 (phosphatidylinositol 3-kinase inhibitors) prevented the RacC-induced morphological changes but did not affect phagocytosis, suggesting that petalopodia are probably not required for RacC-induced phagocytosis. In contrast, inactivating diacylglycerol-binding motif–containing proteins by treating cells with the drug calphostin C completely inhibited phagocytosis in control and RacC WT(+) cells. These results suggest that RacC plays a role in actin cytoskeleton organization and phagocytosis in Dictyostelium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apoptosis is recognized as important for normal cellular homeostasis in multicellular organisms. Although there have been great advances in our knowledge of the molecular events regulating apoptosis, much less is known about the receptors on phagocytes responsible for apoptotic cell recognition and phagocytosis or the ligands on apoptotic cells mediating such recognition. The observations that apoptotic cells are under increased oxidative stress and that oxidized low-density lipoprotein (OxLDL) competes with apoptotic cells for macrophage binding suggested the hypothesis that both OxLDL and apoptotic cells share oxidatively modified moieties on their surfaces that serve as ligands for macrophage recognition. To test this hypothesis, we used murine monoclonal autoantibodies that bind to oxidation-specific epitopes on OxLDL. In particular, antibodies EO6 and EO3 recognize oxidized phospholipids, including 1-palmitoyl 2-(5-oxovaleroyl) phosphatidylcholine (POVPC), and antibodies EO12 and EO14 recognize malondialdehyde-lysine, as in malondialdehyde-LDL. Using FACS analysis, we demonstrated that each of these EO antibodies bound to apoptotic cells but not to normal cells, whereas control IgM antibodies did not. Confocal microscopy demonstrated cell-surface expression of the oxidation-specific epitopes on apoptotic cells. Furthermore, each of these antibodies inhibited the phagocytosis of apoptotic cells by elicited peritoneal macrophages, as did OxLDL. In addition, an adduct of POVPC with BSA also effectively prevented phagocytosis. These data demonstrate that apoptotic cells express oxidation-specific epitopes—including oxidized phospholipids—on their cell surface, and that these serve as ligands for recognition and phagocytosis by elicited macrophages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous immature thymocytes undergo apoptosis and are rapidly engulfed by phagocytic thymic macrophages. The macrophage surface receptors involved in apoptotic thymocyte recognition are unknown. We have examined the role of the class A macrophage scavenger receptor (SR-A) in the engulfment of apoptotic thymocytes. Uptake of steroid-treated apoptotic thymocytes by thymic and inflammatory-elicited SR-A positive macrophages is partially inhibited by an anti-SR-A mAb and more completely by a range of scavenger receptor ligands. Thymic macrophages from mice with targeted disruption of the SR-A gene show a 50% reduction in phagocytosis of apoptotic thymocytes in vitro. These data suggest that SR-A may play a role in the clearance of dying cells in the thymus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phagocytosis is a phylogenetically primitive mechanism adapted by specialized cells of the immune system to ingest particulate pathogens. Recent evidence suggests that the program of specific cytoskeletal rearrangements that underlies phagocytosis may share elements with the antigen receptor signaling pathway in lymphocytes. Tyrosine phosphorylation, necessary for both lymphocyte effector function and phagocytosis, is thought to allow cytoskeletal elements to couple to the intracellular domains of antigen and Fc receptor subunits. We show here that the intracellular domains of the receptors are not inherently required for cytoskeletal coupling. Chimeric transmembrane proteins bearing syk but not src family tyrosine kinase domains are capable of autonomously triggering phagocytosis and redistribution of filamentous actin in COS cells. These responses cannot be initiated by a receptor chimera bearing a point mutation in the syk catalytic domain, and the kinase domain alone is sufficient for initiating cytoskeletal coupling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The host response to Gram-negative bacterial infection is influenced by two homologous lipopolysaccharide (LPS)-interactive proteins, LPS-binding protein (LBP) and the bacteridical/permeability-increasing protein (BPI). Both proteins bind LPS via their N-terminal domains but produce profoundly different effects: BPI and a bioactive N-terminal fragment BPI-21 exert a selective and potent antibacterial effect upon Gram-negative bacteria and suppress LPS bioactivity whereas LBP is not toxic toward Gram-negative bacteria and potentiates LPS bioactivity. The latter effect of LBP requires the C-terminal domain for delivery of LPS to CD14, so we postulated that the C-terminal region of BPI may serve a similar delivery function but to distinct targets. LBP, holoBPI, BPI-21, and LBP/BPI chimeras were compared for their ability to promote uptake by human phagocytes of an encapsulated, phagocytosis-resistant strain of Escherichia coli. We show that only bacteria preincubated with holoBPI are ingested by neutrophils and monocytes. These findings suggest that, when extracellular holoBPI is bound via its N-terminal domain to Gram-negative bacteria, the C-terminal domain promotes bacterial attachment to neutrophils and monocytes, leading to phagocytosis. Therefore, analogous to the role of the C-terminal domain of LBP in delivery of LPS to CD14, the C-terminal domain of BPI may fulfill a similar function in BPI-specific disposal pathways for Gram-negative bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have analyzed the Drosophila immune response in domino mutant larvae, which are devoid of blood cells. The domino mutants have a good larval viability, but they die as prepupae. We show that, on immune challenge, induction of the genes encoding antimicrobial peptides in the fat body is not affected significantly in the mutant larvae, indicating that hemocytes are not essential in this process. The hemocoele of domino larvae contains numerous live microorganisms, the presence of which induces a weak antimicrobial response in the fat body. A full response is observed only after septic injury. We propose that the fat body cells are activated both by the presence of microorganisms and by injury and that injury potentiates the effect of microorganisms. Survival experiments after an immune challenge showed that domino mutants devoid of blood cells maintain a wild-type resistance to septic injury. This resistance was also observed in mutant larvae in which the synthesis of antibacterial peptides is impaired (immune deficiency larvae) and in mutants that are deficient for humoral melanization (Black cells larvae). However, if domino was combined with either the immune deficiency or the Black cell mutation, the resistance to septic injury was reduced severely. These results establish the relevance of the three immune reactions: phagocytosis, synthesis of antibacterial peptides, and melanization. By working in synergy, they provide Drosophila a highly effective defense against injury and/or infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a PCR approach we have isolated racF1, a novel member of the Rho family in Dictyostelium. The racF1 gene encodes a protein of 193 amino acids and is constitutively expressed throughout the Dictyostelium life cycle. Highest identity (94%) was found to a RacF2 isoform, to Dictyostelium Rac1A, Rac1B, and Rac1C (70%), and to Rac proteins of animal species (64–69%). To investigate the role of RacF1 in cytoskeleton-dependent processes, we have fused it at its amino-terminus with green fluorescent protein (GFP) and studied the dynamics of subcellular redistribution using a confocal laser scanning microscope and a double-view microscope system. GFP–RacF1 was homogeneously distributed in the cytosol and accumulated at the plasma membrane, especially at regions of transient intercellular contacts. GFP–RacF1 also localized transiently to macropinosomes and phagocytic cups and was gradually released within <1 min after formation of the endocytic vesicle or the phagosome, respectively. On stimulation with cAMP, no enrichment of GFP–RacF1 was observed in leading fronts, from which it was found to be initially excluded. Cell lines were obtained using homologous recombination that expressed a truncated racF1 gene lacking sequences encoding the carboxyl-terminal region responsible for membrane targeting. These cells displayed normal phagocytosis, endocytosis, and exocytosis rates. Our results suggest that RacF1 associates with dynamic structures that are formed during pinocytosis and phagocytosis. Although RacF1 appears not to be essential, it might act in concert and/or share functions with other members of the Rho family in the regulation of a subset of cytoskeletal rearrangements that are required for these processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We cloned two genes, KIN1 and KIN2, encoding kinesin-II homologues from the ciliate Tetrahymena thermophila and constructed strains lacking either KIN1 or KIN2 or both genes. Cells with a single disruption of either gene showed partly overlapping sets of defects in cell growth, motility, ciliary assembly, and thermoresistance. Deletion of both genes resulted in loss of cilia and arrests in cytokinesis. Mutant cells were unable to assemble new cilia or to maintain preexisting cilia. Double knockout cells were not viable on a standard medium but could be grown on a modified medium on which growth does not depend on phagocytosis. Double knockout cells could be rescued by transformation with a gene encoding an epitope-tagged Kin1p. In growing cells, epitope-tagged Kin1p preferentially accumulated in cilia undergoing active assembly. Kin1p was also detected in the cell body but did not show any association with the cleavage furrow. The cell division arrests observed in kinesin-II knockout cells appear to be induced by the loss of cilia and resulting cell paralysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We purified from Dictyostelium lysates an 88-kDa protein that bound to a subset of small GTPases, including racE, racC, cdc42Hs, and TC4ran, but did not bind to R-ras or rabB. Cloning of the gene encoding this 88-kDa protein revealed that it contained multiple armadillo-like repeats most closely related to the mammalian GTP exchange factor smgGDS. We named this protein darlin (Dictyostelium armadillo-like protein). Disruption of the gene encoding darlin demonstrated that this protein is not essential for cytokinesis, pinocytosis, phagocytosis, or development. However, the ability of darlin null cells to aggregate in response to starvation is severely affected. When starved under liquid medium, the mutant cells were unable to form aggregation centers and streams, possibly because of a defect in cAMP relay signaling. This defect was not due to an inability of the darlin mutants to activate adenylate cyclase in response to G protein stimulation. These results suggest that the darlin protein is involved in a signaling pathway that may modulate the chemotactic response during early development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Efficient postendocytic membrane traffic in polarized epithelial cells is thought to be regulated in part by the actin cytoskeleton. RhoA modulates assemblies of actin in the cell, and it has been shown to regulate pinocytosis and phagocytosis; however, its effects on postendocytic traffic are largely unexplored. To this end, we expressed wild-type RhoA (RhoAWT), dominant active RhoA (RhoAV14), and dominant inactive RhoA (RhoAN19) in Madin-Darby canine kidney (MDCK) cells expressing the polymeric immunoglobulin receptor. RhoAV14 expression stimulated the rate of apical and basolateral endocytosis, whereas RhoAN19 expression decreased the rate from both membrane domains. Polarized basolateral recycling of transferrin was disrupted in RhoAV14-expressing cells as a result of increased ligand release at the apical pole of the cell. Degradation of basolaterally internalized epidermal growth factor was slowed in RhoAV14-expressing cells. Although apical recycling of immunoglobulin A (IgA) was largely unaffected in cells expressing RhoAV14, transcytosis of basolaterally internalized IgA was severely impaired. Morphological and biochemical analyses demonstrated that a large proportion of IgA internalized from the basolateral pole of RhoAV14-expressing cells remained within basolateral early endosomes and was slow to exit these compartments. RhoAN19 and RhoAWT expression had little effect on these postendocytic pathways. These results indicate that in polarized MDCK cells activated RhoA may modulate endocytosis from both membrane domains and postendocytic traffic at the basolateral pole of the cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many cytokines exert their biological effect through members of the hemopoietin receptor family. Using degenerate oligonucleotides to the common WSXWS motif, we have cloned from human hemopoietic cell cDNA libraries various forms of the receptor that was recently shown to bind the obesity hormone, leptin. mRNAs encoding long and short forms of the human leptin receptor were found to be coexpressed in a range of human and murine hemopoietic organs, and a subset of cells from these tissues bound leptin at the cell surface. Ectopic expression in murine Ba/F3 and M1 cell lines revealed that the long, but not the short, form of the leptin receptor can signal proliferation and differentiation, respectively. In cultures of murine or human marrow cells, human leptin exhibited no capacity to stimulate cell survival or proliferation, but it enhanced cytokine production and phagocytosis of Leishmania parasites by murine peritoneal macrophages. Our data provide evidence that, in addition to its role in fat regulation, leptin may also be able to regulate aspects of hemopoiesis and macrophage function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neisseria gonorrhoeae (GC) or Escherichia coli expressing phase-variable opacity (Opa) protein (Opa+ GC or Opa+ E. coli) adhere to human neutrophils and stimulate phagocytosis, whereas their counterparts not expressing Opa protein (Opa− GC or Opa− E. coli) do not. Opa+ GC or E. coli do not adhere to human lymphocytes and promyelocytic cell lines such as HL-60 cells. The adherence of Opa+ GC to the neutrophils can be enhanced dramatically if the neutrophils are preactivated. These data suggest that the components binding the Opa+ bacteria might exist in the granules. CGM1a antigen, a transmembrane protein of the carcinoembryonic antigen family, is exclusively expressed in the granulocytic lineage. The predicted molecular weight of CGM1a is ≈30 kDa. We observed specific binding of OpaI+ E. coli to a 30-kDa band of polymorphonuclear leukocytes lysates. To prove the hypothesis that the 30-kDa CGM1a antigen from neutrophils was the receptor of Opa+ bacteria, we showed that a HeLa cell line expressing human CGM1a antigen (HeLa-CGM1a) bound Opa+ E. coli and subsequently engulfed the bacteria. Monoclonal antibodies (COL-1) against CGM1 blocked the interaction between Opa+ E. coli and HeLa-CGM1a. These results demonstrate that HeLa cells when expressing the CGM1a antigens bind and internalize OpaI+ bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The SLP-76 (Src homology 2 domain-containing leukocyte protein of 76 kDa) adapter protein is expressed in T cells and myeloid cells, whereas its homologue BLNK (B cell linker protein) is expressed in B cells. SLP-76 and BLNK link immunoreceptor tyrosine-based activation motif-containing receptors to signaling molecules that include phospholipase C-γ, mitogen-activated protein kinases, and the GTPases Ras and Rho. SLP-76 plays a critical role in T cell receptor, FcɛRI and gpVI collagen receptor signaling, and participates in signaling via FcγR and killer cell inhibitory receptors. BLNK plays a critical role in B cell receptor signaling. We show that murine bone marrow-derived macrophages express both SLP-76 and BLNK. Selective ligation of FcγRI and FcγRII/III resulted in tyrosine phosphorylation of both SLP-76 and BLNK. SLP-76−/− bone marrow-derived macrophages display FcγR-mediated tyrosine phosphorylation of Syk, phospholipase C-γ2, and extracellular signal regulated kinases 1 and 2, and normal FcγR-dependent phagocytosis. These data suggest that both SLP-76 and BLNK are coupled to FcγR signaling in murine macrophages.